How to Evaluate Microvascular Function and Angina

Myeong-Ho Yoon Ajou University Hospital

Angina without Coronary Artery Disease (CAD)

- Prevalence: 20-30% going c-angiography, with a higher prevalence (almost 50%) in women.
- The 5-year rate of MACE outcomes were 3-fold higher in symptomatic women with normal coronary arteries and approximately 8-fold higher in symptomatic women with nonobstructive CAD compared with asymptomatic women without CAD.

Angina Pectoris and Myocardial Ischemia Without Obstructive CAD

- Cardiac syndrome X (CSX)
 - 1) Typical exercise-induced angina
 - 2) Documented stress-induced myocardial ischemia
 - 3) Absence of obstructive atherosclerotic CAD
 - 4) Absence of vasospastic angina
 - Female predominance: 70% of CSX
 - In WISE study, almost half of the women with no obstructive CAD showed abnormal CFR consistent with coronary microvascular dysfunction (CMD)

Angina Pectoris and Myocardial Ischemia in the Absence of Obstructive CAD

Microvascular angina

- 1)+2)+3)+4)+5) Active demonstration of CMD (positive acetylcholine and/or adenosine test results)
- As many as 50% to 65% of angina patients without obstructive CAD are believed to have CMD, also known as microvascular angina.

Coronary Microvascular Circulation

Current cardiovascular imaging technologies are unable to image the vessels that are smaller than 500 µm in diameter.

Assessment of

Coronary Microvascular Function

- Study of the coronary microcirculation is indirect parameters, such as coronary blood flow and coronary flow reserve (CFR), which reflect its functional status
- Lack of uniform diagnostic criteria.
- Relative contributions of CMD to pathologic microvascular angina are poorly understood yet.

Prognosis of CMD or Microvascular Angina

20% higher rate of cardiovascular events (death, acute coronary syndromes, stroke, and need for revascularization) at 46-month follow-up.

Halcox JP, et al. Circulation 2002;106:653–8

Microvascular dysfunction was associated with a 3.3-fold increase in the risk of cardiac death at 12 years (36.9%) compared with subjects having a normal endothelial function.

van de Hoef TP, et al. Circ Cardiovasc Interv 2013;6:329–35

F/45, exertional chest pain and dyspnea for 2 years

CFR measured by Flow Wire

Non-Invasive Methods to Assess the Microvascular Function

- Exercise stress test, exercise treadmill test (ETT): low accuracy, in-sensitive
- Traditional stress imaging; stress imaging techniques (stress echocardiography, nuclear perfusion stress testing) remain insensitive in diagnosing CMD.
 - Standard noninvasive imaging (stress echo and myocardial perfusion SPECT) is often normal in CMD.

Camici PG et al. Circulation 992;86:179-86

Non-Invasive Assessment of Coronary Microcirculation

 PET (positron emission tomography) scan:
Most established non-invasive technique form the assessment of CBF, regional MBF and reserve

Why PET? - Comparison of PET and SPECT Perfusion Imaging

Diagnostic Accuracy of PET Myocardial Perfusion Imaging

Sensitivity (%)	Specificity (%)	No. Patients	Agent	Author
95	100	50	NH ₃ , ⁸² Rb	Gould et al ²²⁴
94	95	193	⁸² Rb	Demer et al ²²⁵
93	78	202	⁸² Rb	Go et al ²²⁶
97	100	45	NH₃	Schelbert et al ²²⁷
93	100	49	NH₃	Yonekura et al ²²⁸
98	93	146	⁸² Rb	Williams et al ²²⁹
84	88	81	⁸² Rb	Stewart et al ²³⁰
95	95	25	NH ₃	Tamaki et al ²³¹
93	92	791		Average
Author	Tracer	Accuracy (%)	Sensitivity (%)	Specificity (%)
Go et al ²³² (n = 132)	Rb-82	92	95	82
	T1-201	78	79	76
Stewart et al ²³³ (n = 81)	Rb-82	85	87	82
	T1-201	78	87	52
Tamaki et al ²³⁴ (n = 51)	NH3	98	98	100
	T1-201	98	96	100
Total (n = 264)	PET	91	93	82
	SPECT	81	85	67

Josef M. Nucl Med 2005;35:17-36

Bengel FM et al. J Am Coll Cardiol 2009;54:1-15

Myocardial Blood Flow And Reserve by PET

Provides insight into early and subclinical abnormalities in coronary arterial vascular function and/or structure, non-invasively

Predict Prognosis

101 8916 Mean Tail 100 1.089 rcs 10 1.234 Tcs 10 1.102	10 0.0750 0 0.0250 0 0.0646 1 0.0646	HCI #Pts Mean 518 Tad 100 1.2009 0.21	28V
	and a second	Tex 10 1.4049 0.00	10
J. J.	1 1		ŝ
st MBF \$ I/g/min)	Stress MBF (ml/g/min)	MFR (Stress/Rest)	
1.09	1.31	1.20	
1.10	1.55	1.41	
1.22	1.65	1.35	
	est MBF 3 l/g/min) 1.09 1.10 1.22	st MBF Vg/min) Stress MBF (ml/g/min) 1.09 1.31 1.10 1.55 1.22 1.65	stress MBF MFR (ml/g/min) MFR (Stress/Rest) 1.09 1.31 1.20 1.10 1.55 1.41 1.22 1.65 1.35

Shindler TH et al. J Am Coll Cardiol 2010;3:623-40

Non-Invasive Assessment of Coronary Microcirculation

> MRI

- Can also be used for quantification of myocardial blood flow

Phase-Contrast Cine MRI

- RPP (mm Hg/min) = Systolic blood pressure (mm Hg) X Heart rate (beats/min)
- Corrected coronary sinus flow (mL/min) = coronary sinus flow (mL/min) / RPP (mm Hg/min) X 7500

В

The CFR were calculated as: CFR = Corrected coronary sinus flow during ATP infusion (mL/min)/Corrected coronary sinus flow at rest (mL/min)

Phase contrast cine MRI

Invasive Assessment of CMD

- TIMI Frame Count and TIMI Frame Count Reserve
- TIMI Myocardial Perfusion Grade
- Coronary Reactivity Test
 - Coronary blood flow reserve (CFR)
 - Index of microvascular index (IMR)
 - Hyperemic microvascular resistance index

Coronary Reactivity Test

- Assessment of endotheliaum-dependent CFR by acetylcholine
- Assessment of endotheliaum-independent CFR by adenosine
- A >50% increase in CBF above baseline in response to acetylcholine and a CFR >2.5 in response to adenosine is considered normal.

Corrected TIMI Frame Count

First Frame Definition

Frame 0: Dye Touches One or No Borders

Frame 1: Dye Touches Both Borders & Moves Forward

Last Frame Definition

Frame 21: Dye <u>First</u> Enters Landmark

RCA 1st branch off posterolateral LCX Last branch off most distal OM LAD "Whale's tail" or "pitchfork" or most distal branch LAD at pex

Distal Landmark

Gibson CM. Circulation 1996; 93:879-888.

Normal Flow in the Absence of MI: 21.0 ± 3.1 Frames

Myocardial Blush

- Following contrast injection into the coronary arteries, there is late filling of the distal capillaries
- In order to visualize myocardial blush, it is important to remain on the cine pedal for an extended period

TIMI Myocardial Perfusion Grade (TMPG)

• **TMPG 0**

No appearance of blush or opacification of the myocardium

• **TMPG 1**

Presence of blush but no clearance of contrast (stain is present on the next injection)

• **TMPG 2**

Blush clears slowly – clears minimally or not at all during three cardiac cycles

• **TMPG 3**

Blush begins to washout and is only minimally persistent after three cardiac cycles

TIMI Myocardial Perfusion (TMP) Grades

Gibson CM, et al. *Circulation*. 2000;101:125-130

TMPG

Simple, however, several limitations

- Inter- and intraobserver variability
- Semi-quantitative, subjective

	Differences					
	Ν	Agreement	1 Grade	2 Grades	3 Grades	
Intraobserver variability	40	92.5%	7.5%	0%	0%	
Interobserver variability	40	85.0%	12.5%	2.5%	0%	

Stone GW, et.al. JAm Coll Cardiol 2002;39:591

CFR by Intracoronary Doppler

Doppler Velocity Transducer

> Pressure Sensor

CFR doppler = hAPV/2 X CSA / bAPV/2 x CSA = hAPV / bAPV

CFR by Pressure Wire (Thermodilusion Method)

> CFR thermo

= mean bTMN / mean hTMN

CMD in Women Without or Non-Obstructive CAD

Pepine et al. J Am Coll Cardiol 2010;55:2825-32

CFR After Primary PCI for AMI in Predicting Long-Term MACE

Takahashi T, et al. Am J Cardiol 2007;100:806

Advantages and Limitations of CFR

Advantages
Concrete Data for microvascular angina
Abnormal value between 2.0-2.5
Another factors affecting CFR
LVH, LVEDP, HR, Age, Hemodynamic conditions

IMR

(Index of Microvascular Resistance)

- **Resistance** = \triangle **Pressure / Flow**
- $1 / T_{mn} \cong Flow$
- IMR = $(P_d P_v) / (1 / T_{mn})$
- $IMR = P_d \times T_{mn}$

at maximal hyperemia

Measurement of IMR

Case 1 : IMR

Case 1 : FDG PET

Myocardial viability with FDG PET

Case 2 : IMR

M/60 STEMI (ant.) IMR : 72.3 U

Case 2 : FDG PET

Myocardial viability with FDG PET

Prognostic Value of the IMR

• The Kaplan–Meier curves between IMR >40 and survival free of death or rehospitalization for heart failure.

Fearon W et al. Circulation. 2013;127:2436-41

Combined Index (IMR and CFR) in AMI

Ahn SG et al. J Am Coll Cardiol Intv 2016;-:---

Advantage of IMR

Correlation between IMR and TMR at 24 different combinations of myocardial resistance and epicardial stenosis severity

Aarnoudse et al. Catheter Cardiovasc Interv. 2004;62(1):56-63.

Advantage of IMR

Mean correlation coefficients of IMR, CFR, FFR values comparing baseline measurements with each hemodynamic intervention

Martin et al. Circulation 2006;113;2054-2061

Limitations of IMR

- Invasive
- Interpatient variability?
 - Sensor distance (in the distal 2/3 of the vessel)
- Normal value?
- No clinical data in patients with angina and nonobstructive CAD
- Independent of epicardial stenosis
 - Coronary wedge pressure

Hyperemic Microvascular Resistance Index (hMVRI) vs. IMR

 hMVRI (mmHg·cm · sec⁻¹) = Pd/hAPV (by Combo Wire)

• IMR = Pd X Tmn (by Radi Wire)

ComboMap[®]: Pressure and Flow System, Soft ware Version 2.1

Measurement of hMVRI by Combo Wire

✓ hMVRI (mmHg·cm · sec⁻¹) = Pd/hAPV
= 91/27 = 3.37 mmHg·cm · sec⁻¹

hMVRI and LV-WMA

Yoon MH, et al. Am J Cardiol 2008;102:129

Kaplan-Meier event free survival analysis for MACE

Jin X, et al. Korean Circ J 2015;45:194

Why Should We Measure the Coronary Microvascular Function?

- Microvascular function is an important prognostic factor in a wide range of disease.
- In recent years, evidence has shown that CMD is a true clinical entity rather than a mystery or an academic curiosity.
- Measurement of CMD and identifying the mechanisms of angina is important to provide a rational treatment strategy and improving the quality of life and long-term prognosis.

Thank You for Your Attention